
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4576 341

Different Technologies for Improving the

Performance of Hadoop

Mr. Yogesh Gupta
1
, Mr. Satish Patil

2
, Mr. Omkar Ghumatkar

3

Student, IT Dept,PVG’s COET,Pune. Pune,India
1

Student, IT Dept,PVG’s COET,Pune. Pune,India
2

Student, IT Dept,PVG’s COET,Pune. Pune,India
3

Abstract: Hadoop is a popular open-source implementation of the MapReduce programming model for Cloud

Computing. However, it faces a number of issue to achieve the best performance from the underlying system. It include

a serialization barrier that delays the reduce phase, repetitive merges and disk access, and lack of capability to leverage

latest high-speed interconnects. We express some technologies which are helpful for improve the performance of

Hadoop. The technologies are Hadoop-A, iShuffle, TCP/IP implementation of Hadoop-A, Hadoop OFE, Hadoop online

are used for regret the performance of Hadoop.

Keywords: Hadoop, MapReduce, JobTracker, TaskTracker, MapTask, RDMA, InfiniBand, MOFSupplier, NetMerger,

iShuffle, OFE.

I. INTRODUCTION

Hadoop[1] is an open-source implementation of

MapReduce[2], currently maintained by the Apache

Foundation, and supported by leading IT companies such

as Google and Yahoo!.Hadoop implements MapReduce

framework which use 2 types of components: 1.JobTracker

2.TaskTracker.JobTracker gives the command to the

TaskTrackers to process the data in parallel manner.

JobTracker have 2 main functions i.e. map and reduce. In

that the JobTracker gives the charges of MapTask and

ReduceTask to the TaskTracker. It also monitors their

progress and handles the faults by re-executing the task.

There are different issues in MapReduce framework

that a) Serialization between Hadoop shuffle/merge and

reduce phase b) Repetitive merge and disk access c)

unable to use RDMA interconnects. d) MapReduce

computations often have “hot spots” in which the

computation is lengthened due to inadequate bandwidth to

some of the nodes. e) Hadoop-A is implemented based on

InfiniBand, which restricts the usage of new algorithms on

commercial cloud servers and prevents them from proving

their contribution towards solving the disk I/O bottleneck.

Several different techniques have been taken to accelerate

Hadoop as follows.

Hadoop-A[3] is an acceleration framework that

optimizes Hadoop with plug-ins which are implemented in

C++ for fast data movement.

Hadoop Online presents a modified version of the

Hadoop MapReduce framework that supports online

aggregation, which allows users to see “early returns”

from a job as it is being computed. The Hadoop Online

Prototype (HOP) also supports continuous queries, which

enable MapReduce programs to be written for applications

such as event monitoring and stream processing.

Hadoop-OFE’s approach to acceleration is orthogonal

to the methods discussed above. Its goal is to improve the

performance of MapReduce in Hadoop by utilizing

OpenFlow as the interconnects between Hadoop nodes.

One strategy is to make use of the QoS abilities of

OpenFlow, which allows control over egress queues in an

OpenFlow switch. This makes it possible for different

flows to have different priorities over the bandwidth, and

allows an application to control this priority setting. Thus

applications can dynamically set different priorities to

flows. In the case of Hadoop MapReduce there are distinct

phases of execution that can benefit by prioritizing traffic

on the network.

iShuffle [9], a job-independent shuffle service that

pushes the map output to its designated reduce node. It

decouples shuffle and reduce, and allows shuffle to be

performed independently from reduce. It predicts the map

output partition sizes and automatically balances the

placement of map output partitions across nodes. iShuffle

binds reduce IDs with partition IDs lazily at the time

reduce tasks are scheduled, allowing flexible scheduling of

reduce tasks.

The rest of the paper is organized as follows-

Section (2)Overview of MapReduce Framework,(3)

Design of Hadoop acceleration through network levitated

merge,(4) TCP/IP implementation of Hadoop

A,(5)iShuffle,(6)Hadoop OFE,(7) Conclusion

II. OVERVIEW OF MapReduce FRAMEWORK

Hadoop MapReduce is a pipelined data

processing. Hadoop consist three main execution phases

i.e. map, shuffle/merge and reduce. In a map phase the

JobTracker selects a number of TaskTrackers {TT1, TT2,

TT3…} and schedule them to run the map function. The

mapping function in a map task converts the original

records into intermediate result. These new records are

stored as a MOF(i.e. Map Output Files). In the second

phase when MOFs are available the JobTracker selects the

TaskTrackers to run the reduce task. Typically, there is

one segment in each MOF for every ReduceTask. So, a

ReduceTask need to fetch such a segment for all

MOFs{MOF1,MOF2...}. Globally these phase operation

lead to an all-to-all shuffle on data segments among all the

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4576 342

ReduceTask. Shuffle and merge of data segment by

ReduceTask is called the copy phase of Hadoop. In the

third or reduce phase each ReduceTask loads and process

the merge segment using the reduce function. The final

result is store in HDFS[4].

A. Issues in the MapReduce framework

There are various issues in the existing Hadoop

MapReduce framework these are (a)A serialization in

Hadoop data processing (b)Repetitive merge and disk

access(c)The lack of support for RDMA interconnects.

1. Serialization in Hadoop data processing:

Hadoop process the large datasets in pipelined

manner. There are two phases which processed in

pipelining architecture: 1.Map 2.Shuffle/Merge. After the

initialization multiple MapTask start with the map function

on the first set of data splits. Whenever the MOFs are

generated from these splits then set of ReduceTask

initiates the fetch partition through these MOFs. At every

ReduceTask when total data size is more than a memory

threshold then the smallest datasets are merged. In

MapReduce programming model, the reduce phase does

not execute until the map phase get executed with all data

splits. MapReduce pipeline architecture has an implicit

serialization. At every ReduceTask whenever the merge

and shuffle operations are completed on each data splits

then reduce phase initiates to process data segment using

reduce function. Because of this serialization, reduce phase

will be delayed.

2. Repetitive merge and disk access:

ReduceTask merge data segment when the

number of segment or their total size grows over a

threshold a newly merge segment has to be spilled to local

disk due to memory pressure. In the existing merge

algorithm in Hadoop leads to more repetitive merge

therefore the extra disk is accessed. When more segments

are arrive then the threshold will be broken. It is vital to

choose a different policy for merge to minimize the

additional disk accessed. An alternative merge algorithm is

important for reduce the drawback i.e. repetitive merge

and associated disk access for Hadoop.

3. Unable to use RDMA interconnects:

The existing Hadoop is not taking the advantage

of high performance RDMA interconnect technology that

have high performance computing such as

InfiniBand[5].However the RDMA supports high

bandwidth and less CPU utilization. To run the Hadoop on

TCP/IP will not leverage the strength of RDMA.

III. DESIGN OF HADOOP ACCELERATION

THROUGH NETWORK LEVITATED

MERGE

As per the issues discuss in section 2, it’s

important to overcome it for improve the performance of

Hadoop. The Hadoop-A(Hadoop Acceleration) is a

technique which accelerate the Hadoop’s MapReduce

framework and overcome the limitation of it. An

acceleration framework take the advantages of RDMA

interconnect and different merge technique for boost up

the performance of Hadoop framework.

A. Architecture of Hadoop-A

In figure1 Hadoop-A design two new user-

configurable plug-ins are added in framework that is a)

MOFSupplier b) NetMerger. These plug-ins are use the

RDMA interconnect and different alternative merge

algorithm. The MOFSupplier and NetMerger both are

developed in C++ with Object-Oriented principles. The

Acceleration Framework consists 3 techniques for the

implementation as follows:

1. User-Transparent Plug-in: These plug-in are developed

for user to enable or disable the acceleration for execution

which is controlled by a parameter in the configuration

file. The user-transparent in a two ways (1) No changes

are introduced in scheduling and monitoring of

TaskTracker and MapTask (2) No modification has been

made into the submission and control interface between

user program and JobTracker.

Fig 1: Hadoop Architecture

2. Multithreaded and Componentized MOFSupplier and

NetMerger: The MOFSupplier consist RDMA Server

which handles the fetch request and ReduceTask. It also

consists the data engine that manages the index and data

files for the MOFs are generated by local MapTasks.

3. Event-Driven Progress and Coordination: In this

approach for synchronizing with Java-side components

provide the event channel between MOFSupplier and

NetMerger plug-ins and Hadoop framework. This is also

used to coordinate activities and monitor progress for

internal components of MOFSupplier and NetMerger.

B. Program Flow

(1) Fetching Header of Segments (S1, S2...)

{H1(S1,<key,val>), H2(S2,<key,val>),..}

(2) Build Priority Queue (PQ) by using Key and

Value of Segment until all Header arrived.

(3) Store root record as First Record(RR=H1)

(4) Fetch and Merge the Record concurrently which

is not already merged.

(5) Deliver Merge data to Reduce Task

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4576 343

IV. TCP/IP IMPLEMENTATION OF HADOOP

A

A TCP/IP Implementation of Hadoop

Acceleration has two components MOFSupplier (Server)

and NetMerger (Client). Multithreading technologies are

used to manage memory pool, send/receive and merge data

segments. A Map Reduce Framework has two file systems

Google File System (GFS) [6] and Hadoop Distributed

File System (HDFS) [4]. On the top of the Hadoop

program, Apache Hive and pig are two applications for

dealing with large amount of data in hadoop.

Figure 2 shows that the relationship between

these components mentioned as earlier. Apache Pig [7]

and Hive [8] are deals with the large amount of data.

Hadoop can support applications running on large

commodity cluster and Hadoop Distributed file system

provides data storage mechanism. The TCP/IP

implementation of Hadoop-A is used to improve the

performance of Hadoop. It includes two components

MOFSupplier and NetMerger connected with TCP/IP

socket protocol via Ethernet.

Fig 2 : Layered Architecture

A. TCP/IP by Hadoop-A Architecture

1 .Epoll in Linux kernel:

Epoll is an I/O event notification mechanism used

in high performance network communication. It is used to

replace traditional POSIX poll and select system calls.

Here are some benefits of epoll over old poll/select

mechanism: (1) the disadvantage of select is that the

number of opened file descriptors (FD) is limited, which is

sometimes not enough for the server; epoll does not have

this limitation, and the largest number of FD can be

opened, which is more larger than 2048; (2) another

disadvantage of traditional select is that when you obtain a

large set of sockets, due to network delay, only some of

the sockets are active, but select/poll still scans all of the

socket set linearly, which can lead to efficiency

proportional penalties. (3) select, poll and epoll, all require

the Linux kernel to provide information to the user space;

as a result, avoiding useless memory copies is very

important. Epoll solves this problem with the help of map

via shared memory.

2. Multithreading:

As we know, disk I/O is always the bottleneck

and data movement is expensive and time consuming.

Consider the case where we only use one thread to read

data from disk. When we get all the data we need in the

memory, we send these data to the receiver. After the

receiver gets this data, it does some calculation and writes

data back sequence. We can make use of this

multithreading technology to overlap the execution of this

process. For instance, we can start a thread to read data

from the disk, at the same time letting another thread send

data. In the same way, we can also keep one thread

receiving data while another thread computing the

received data. For the purpose of increasing the speed of

sending or receiving data over Ethernet.

3. Buffer allocation management:

One of the important resources in computing

systems is memory. In MOFSuppliers, the program firstly

allocates many buffers to a Memory Pool, once a Mapper

write new Map Output data on the disk, when the disk read

thread will get new empty buffer from memory pool to

read data from disk. As long as NetMergers receive data,

the receive thread get an empty buffer from Memory Pool

and give this buffer with all data to merge thread.

4. Program Flow:

Figure 3 can give you a view of the flow of the

program

(1) When a Reduce Task needs to fetch data from

MapTask, it will send a fetch request to the NetMerger.

(2)NetMerger creates a connection with MOFSupplier and

sends fetches request to MOF- Supplier.

(3) After receiving the request from NetMerger,

MOFSupplier adds the request to the request queue, and

notify DataEngine. Based on the request, DataEngine

searches its Data Cache which is read from disk by the

disk read thread.

Fig 3: Program Flow

(4) If the required data has been found, DataEngine sends

the data back to MOFServer.

(5)MOFServer invokes some send threads to send data

back to the NetMerger.

(6)NetMerger uses many threads to receive data and gives

received data to Merge Thread to do computation. As soon

as computation has been done data will be sent to the

Reduce Task.

V. ISHUFFLE

In the Hadoop, the delay in job completion, the

coupling of the shuffle phase and reduce tasks which

leaves potential parallelism between multiple waves of

map and reduce is unexploited, fails to address data

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4576 344

distribution skew among reduce tasks, and makes task

scheduling inefficient. In this work, we propose to

decouple shuffle from reduce tasks and convert it into a

platform service provided by Hadoop. The iShuffle[9], a

user-transparent shuffle service that pro-actively pushes

map output data to nodes via a novel shuffle-on write

operation and flexibly schedules reduce tasks considering

workload balance.

A. iShuffle Design

iShuffle, a job-independent shuffle service that

pushes the map output to its designated reduce node. It

decouples shuffle and reduce, and allows shuffle to be

performed independently from reduce.

1. Overview :

Figure 4shows the architecture of iShuffle.

iShuffle consists of three components: shuffler, shuffle

manager, and task scheduler. The shuffler is a background

thread that collects intermediate data generated by map

tasks and predicts the size of individual partitions to guide

the partition placement. The shuffle manager analyses the

partition sizes reported by all shufflers and decides the

destination of each partition.

Fig 4: Architecture of iShuffle

User-Transparent Shuffle Service - We design shufflers

and the shuffle manager as job-independent components,

which are responsible for collecting and distributing map

output data.

Shuffle-on-Write - The shuffler implements a shuffle-on-

write operation that proactively pushes the map output data

to different nodes for future reduce tasks. Every time such

data is written to local disks. The shuffling of all map

output data can be performed before the execution of

reduces tasks.

Automated Map Output Placement- The shuffle manager

maintains a global view of partition sizes across all slave

nodes. An automated partition placement algorithm is used

to determine the destination for each map output partition.

The objective is to balance the global data distribution and

mitigate the non-uniformity reduce execution time. The

task scheduler in iShuffle assigns a partition of a reduce

task only when the task is dispatched to a node with

available slots. To minimize reduce execution time,

iShuffle always associates partitions that are already

resident on the reduce node to the scheduled reduce.

2 .Shuffle-On-Write :

iShuffle decouples shuffle from a reduce task and

implements data shuffling as a platform service. This

allows the shuffle phase to be performed independently

from map and reduce tasks. The introduction of iShuffle to

the Hadoop environment presents two challenges: user

transparency and fault tolerance. Besides user-defined map

and reduce functions, Hadoop allows customized

partitioner and combiner. To ensure that iShuffle is user-

transparent and does not require any change to the existing

MapReduce jobs, we design the Shuffler as an independent

component in the TaskTracker. It takes input from the

combiner, the last user-defined component in map tasks,

performs data shuffling and provides input data for reduce

tasks. The shuffler performs data shuffling every time the

output data is written to local disks by map tasks, thus it

name the operation shuffle-on-write.

Fig 5: Workflow of shuffle write

Map output collection - The shuffler contains multiple

DataSpillHandler, one per map task, to collect map output

that has been written to local disks. Map tasks write the

stored partitions to the local file system when a spill of the

in-memory buffer occurs. It intercepts the writer class

IFile. Writer in the combiner and add a DataSpillHandler

class to it. While the default writer writing a spill to local

disk, the DataSpillHandler copies the spill to a circular

buffer, DataSpillQueue, from where data is shuffled/

dispatched to different nodes in Hadoop.

Data shuffling - The shuffler proactively pushes data

partitions to nodes where reduce tasks will be launched.

Specifically, a DataDispatcher reads a partition from the

DataSpillQueue and queries the shuffle manager for its

destination. Based on the placement decision, a partition

could be dispatched to the shuffler on a different node or

to the local merger in the same shuffler.

Map output merging - The map output data shuffled at

different times. It needs to be merged to a single reduce

input file and sorted by key before a reduce task can use it.

The local merger receives remotely and locally shuffled

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4576 345

data and merges the partitions belonging to the same

reduce task into one reduce input. To ensure correctness,

the merger only merges partitions from successfully

finished map tasks.

VI. HADOOP OFE

In recent years, data intensive programming using

hadoop and MapReduce is more increased. Hadoop’s

implementation of MapReduce in a multi rack cluster is

dependent on the top of the rack switches and of the

aggregator switches connecting multiple racks. In Hadoop

OFE, combine the OpenFlow (OF) enabled switches and a

modified JobTracker in Hadoop that is OpenFlow. Hadoop

OFE is used for improving the performance of Hadoop.

Hadoop-OFE on standard ethernet can provide good

performance to Hadoop over specialized interconnects.

 The performance improvements by Hadoop-OFE,

performing experimental studies using: 1) the MalStone

Benchmark [10]; and, 2) an open source Hadoop based

application (Matsu) [11] for processing satellite images to

detect floods and other phenomena.

A. Hadoop-OFE Design

Hadoop-based applications are widely available

in market, the Map and Reduce phases of the computations

are required different network requirements. Also, many

Hadoop applications are in iterative manner because of

that it requires different network requirements for different

phases of the iteration. In principle, if the network

topology of the cluster can be required to support these

requirements, greater efficiency could be achieved when

processing data with Hadoop.

 Following figure 6 and figure 7 shows a Hadoop

cluster with and without OpenFlow networking. To

explain the benefits of OpenFlow, consider the following

example.

 As shown in figure 7, JobTracker is modified to

get the OpenFlow Controller to change the properties of

flow paths dynamically, depending upon the execution

stage of a job. During a Map phase, the flow-path between

systems A, B and system F (which holds input data) can be

assign higher priority for passing the data required by job.

Likewise, during a Reduce phase the flow-path between

systems A, B and E (which performs Reduce) assigns

higher priority.

Fig 6 :.Hadoop cluster

Fig 7: Hadoop cluster with OFE interconnectivity

VII. CONCLUSION

 As per the above points ,the Hadoop-A through

Network Levitated Merge doubles the data processing

throughput of hadoop and reduce CPU utilization by more

than 36%.The iShuffle reduce the Job selection by 30.2%

than existing Hadoop. Hadoop-A by TCP/IP achieve the

good scalability and also 26.7% execution time

outperforms than Hadoop. Hadoop-OFE on standard

Ethernet can provide good performance to Hadoop over

specialized interconnects, like InfiniBand.

 ACKNOWLEDGMENTS

Thanks to our project guide Prof. S. A. Mulay, Head of

Department Prof. G. V. Garje and all staff members of

Information Technology department of PVG’s COET,

Pune.

REFERENCES
[1] Apache Hadoop Project. http://hadoop.apache.org/.

[2] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. Sixth Symp.on Operating System Design and

Implementation (OSDI), pages 137–150, December 2004.

[3] Yandong Wang, XinyuQue, Weikuan Yu, Dror Goldenberg,
DhirajSehgal, LiranLiss. Hadoop Acceleration Through Network

Levitated Merge, SC11, Seattle, WA.

[4] onstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In Proceedings of the

2010 IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST), pages 1–10.
[5] Infiniband Trade Asso. http://www.infinibandta.org.

[6] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The
Google File System,” pub. 19th ACM Symposium on Operating

Systems Principles, Lake George, NY, Octo- ber, 2003.

[7] hristopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar,
and Andrew Tomkins, “Pig latin: a not-so-foreign language for data

processing” In SIGMOD08: Proceedings of the 2008 ACM

SIGMOD international conference on Management of data, pages
10991110, New York, NY, USA, 2008. ACM.

[8] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad

Chakka, Ning Zhang 0002, Suresh Anthony, Hao Liu, and

Raghotham Murthy, “Hive - a petabyte scale data warehouse using

hadoop,” In ICDE, pages 9961005, 2010.
[9] YanfeiGuo, JiaRao, and Xiaobo Zhou “iShuffle: Improving Hadoop

Performance with Shuffle-on-Write” in 10th International

Conference on Autonomic Computing (ICAC ’13)
[10] Collin Bennett, Robert L. Grossman, David Locke, Jonathan

Seidman and Steve Vejcik, MalStone: Towards a Benchmark for

Analytics on Large Data Clouds, The 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining

(KDD 2010), ACM, 2010.

 [11] Daniel Mandl, Stuart Frye, Pat Cappelaere, Robert Sohlberg,
Matthew Handy, and Robert Grossman, The Namibia Early Flood

Warning System, A CEOS Pilot Project, IGARSS 2012.

